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Abstraet-The propagator matri~ method together with the integral transform formalism is
employed to derive the transient stress response in a fibre composite plate due to a normal impulsive
line load acting on its upper surface. Each layer of the composite is modelled as a transversely
isotropic e1"stic m"teri,,1 which is ine~tensible along the fibre direction. The trilnsform solutions are
inverted nUl11eril.:ally using dat" appropri"te to a particular carbon fibre/epo~y resin composite. A
dis<:ussll>n is given l,f the contributions from the individual modes associ:lted with harmonic waves
in the l:m1inate. in terms of the v"riation of group velocity with wavenumber in the mode. Detailed
plots arc prescnted showing the stress v:uiation with distance from the impact line at two different
instants of timc. Thcse plots show the stress levels at the top and bottom suface of the plate. at the
lIlid-surf'll:e and at the upper and I(lwer interfaces between the plies.

I. INTRODUCTION

This p"per extends our e"r1ier results (B"ylis "nd Green, 1988; Green and Baylis. 1988a,b)
rcl:ating to stress WOlve tr;ansmission due to line imp;let loads acting on the surface of a four­
ply I"min;lte of fibre reinforced materi.lI. E:ach of the plies is modelled as a transversely
isotropi~ clastic continuum with the axis of transverse isotropy lying in the plane of the ply
and p"rallcl to the fibre direction. This continuum approach means that we must restrict
~onsideration to Waves whose wavelengths are at least one order of magnitude greater than
the fibre diameter .lOd inter-fibre spacing so that on the scale of the wavelength the
continuulll theory might be expected to be valid. A typical material consists of a 60%
volume fraction of carbon I1bres embedded in a thermoplastic resin. for which the ply
thickness, h ~ 125 Jim. with the fibre diameter and inter-l1bre spacing of the order of 6 Jlm.
Thus we arc thinking in terms of wavelengths of the order of 1/2 to 1/3 the ply thickness
or gre.tter, for which the non-dimensional wave number kh = 21th/A (where A is the
wavelength) varies from zero at inl1nite wavelength to a value of approximately 18 at
A = h/3. For sm.tller wavelengths of the order of It/IO or less, the continuum model will
break down due to ditfraction and scattering by the individual fibres.

There is a considerable simplification in the mathematics to be gained by treating the
composite as inextensible in the direction of transverse isotropy. This is an idealization of
the fact that the extensional modulus of the continuum along the fibre direction can be of
the order of 100 times that in the cross I1brc: direction. Mathematically, the effect of the
idealization is to reduce the order of the differential equations and this leads to solutions
involving fewer parameters. A consequence of this reduction in the order of the equations.
however. is that it is no longer possible to satisfy all the interface continuity conditions
between the plies. This leads to a singular perturbation problem, in which it is necessary to
allow the tangential component of traction along the fibre direction to be discontinuous
across the interface, with a consequent singularity in the stress component along the fibres,
associated with a finite load carried by the surface layer of fibres. These stress discontinuities
are to be interpreted in terms of very narrow bands (boundary layers) adjacent to the
interfaces, through which there exist high stress gradients, giving large changes in stress
across the bands. The associated singular stresses along the boundary fibres are to be
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intapreted as high stress levels in the boundary byers. which contribute finite loads in the
llbre directions when integrated thn)ugh the boundary byas. It is with these interpretations
in mind that we adopt the idealization of inextensibilit::- to give a mathematically simple
model of our llbn: reinforced material. Detailed comparisons between the dynamic behaviour
of the idealized inextensible model and of a continuum model which does not adopt
the inextensibility constraint have been presented elsewhere (Green. 19S2: Green and
Milosavljevic. 19:-;5: Baylis and Green. 19S6a.bl. but a comparison of the results of the two
ml)dels is included here for completeness.

In this paper we are concerned with a symmetric cross-ply conliguratil)n of the laminate
in which the two inner layers are aligned with the tlbre directions parallel w each other and
at right angles to the fibre direction in the two outa byers. We make nl) assumptions
about the variatil)Jl of displacements and stresses through the laminate. such as is done in
engineering theories of plates and shells. Our method is to solve e,xaetly the system of
gon:rning equations appropriate to each layer. matching the solutions across the interfaces
and satisfying the appropriate boundary conditions at the upper and lower surfaces of the
laminate. The method of solution involves taking Laplace transforms in time and Fourier
transforms in the in-plane spatial coordinates of the governing equations of the model. and
yields the exact solution for the variation of the transforms with depth throughout the
laminate. The approximations arise only in the numerical methods for imerting the trans­
forms.

The results presented in Baylis and Green (19SX) relate to a line impal·t load oriented
at an angle of (,() to the llbre direction in the outer layers. This generates a plane wave
disturbance travelling in the plane of the laminate along the normal to the line load. I\-tost
of thl' results displayed in that paper show the variation of normal displacement at the
upper and lower surfaces of the plale as a function of distance along the dircclion of travel.
at v~lrious time after impact. The sanle paper also n:ports dctails of the tangential surface
displacement variation with distancc and of the surfaec stress variation WIth distance at
both the upper and lower surfaces of the plate at one fixed time. More detailed results are
presented in (jreen and Baylis (19XXb) which dcals with line loads oriented at () . :10 .45 .
()() and 9() to the libre direction in the oukr layer. In addition to displaying the normal
displacement on the upper and lower surfaces of the laminate. graphs are also presented
showing the variation of the displacel11l:nt normal to the plate as a function of distance
from the impact line. at the interfaces bdween each of the plies at fixed times, These results
bring out the existence of a Rayleigh surface wave disturbam:e at some orientations of the
impact load and its absence at others.

Hcre we are concerncd with a study of the stresses resulting from the line load impact
on the upper surface of the four-ply plate, Attention is restricted to impacts oriented at
3() and 6() to the outer !ibn: direction since these two situations sul1ic~ to show the dilferent
nature of the responses. The transient stresses ure evuluated at the outer sllrl~lces of the
plate. at th~ mid-plane und at the interfaces b~tween the plies. We display our results as
sets of curves showing the variations of stress along the normal to th~ impact line in the
direction of travel as a function of distance from the impact line. These results relate to tWl)
instants of time. The first of these corr~sponds to the time taken for the fastest body wave
in the medium to travel a distanc~ of \0 times th~ ov~rall plate thickness. The second is the
time taken for the same wave to travel a distance of 50 times the plate thickness. The sets
of curves display three ditli:rent components of stress. Two of these ure the two orthogonal
shear tractions which act on each interface :1I1d on the upper and lower surl~lCes. the directions
of the stresses being purallel to the two (orthogonal) tibre directions. The third stress
component is the in-plane normal stress acting along the llbre direction of the outer layers
and this also is evaluated at the upper and lower surfaces and at the interfaces. Our earlier
work has drawn attention to the existence of a Rayleigh surface type wave tf:lYelling along
the top surface for one runge of impact ungles und its non-existence outside this range. The
curves shown here confirm this phenomenon and demonstrate its decay with depth into the
luminate. In addition. they furnish comparisons of the magnitudes ofth~ stress components
associated with different angles of propagation and the variation of stress level with depth
in the laminates.
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The object of this theoretical investigation is to determine the nature of the three­
dimensional stress wave transmission in a fibre composite laminate under the assumption
of complete bonding between the plies. Such a situation can serve a two-fold purpose. In
the first place. as pointed out by Mal (1988). it can provide a standard against which to
compare the results of non-destructive evaluation (NDE) measuremems aimed at locating
flaws in the laminate. Secondly. it provides information on the channelling of disturbances
.... ithin individual layers and along particular orientations relative to the fibres (see for
example Kreis and Sayir. 1983) and this serves to indicate regions at which impact stress
levels may be higher than would be anticipated from predictions based on simple plate
theories.

The solution techniques developed in our earlier papers allow us to evaluate dis­
placements and stresses throughout the laminate and it is a report on the stresses which
will be our main concern here. In Section 2 we review the solution technique and obtain
detailed expressions for the displacement and stress transforms at the middle surface and
the two interfaces·of the four-ply plate. Section 3 contLlins a brief account of the numerical
inversion of the transforms whilst the detailed solutions are presented and discussed in
Section 4.

Transient problems in elastic waveguides have been extensively studied by Miklowitz
and his co-workers and a comprehensive account of the eMly work is to be found in the
monograph by Miklowitz (1978). Among the more recent studies which have a relevance
to the present work we cite the papers of Ceranoglu and Pao (1981). Weaver and Pao
(191'2) and Vasudevan and Mal (19R5). which treat isotropic plates. Lind the paper by Willis
and Redding (1971'). which is concerned with anisotropic plates and layers. These studies all
appro.teh the problem using the full three-dimensional equations of motion. An alternative
techniljue is to make usc of an engineering type plate theory which makes S(I!l1e simplifying
assllmption ahout the nature of the variation of stress through the laminate. and results in
equations of motion involving only the in-plane space variables. An example or this tech­
nique is to be round in the paper by Chow (1971). who deals with the impact response or
a simply supported laminated plate. This is also the approach adoph:d in the pLlpers by
Moon (1972) and Sun (1973). who plot the wave fronts due to a pllint impact on symmetric
and asymmetric angle-ply laminates. respectively. A third alternative method is exemplified
in the papers by Lee ellli. (19X4) and by Wu .lnd Springer (19XX), which both employ the
finite element numerical techniquc to evaluate the transient stresses induced by impact on
composite plates.

!. GOVER:-.lING EQUATIONS AND TRANSFORM SOLUTIO:-':S

We choose a Cartesian coordinate system of axes with the origin in the mid-plane of
the plate. the XI-axis 11 llrmaI to the plane of the layers. the x!-axis parallel to the libre
directions in the two outer layers of the platc and the XI-axis parallel to the tibre uireetions
in the t\'.. o inner layers of the plate as depicted in Fig. I. Despite the fact that the layers are
all of the same materi'lls. we lind it useful to designate the layers with the fibre direction
parallel to X\ as material I and the layers with libre directions parallel to X1 as muterial 2
and denote stress LInd displacement components in the layers with the corresponding sul1ix.
The line load which prodlll:es the disturbance is taken to he a delta function in tillle LInd it
is assumed to act on the upper surf:lce of the plate. Lllong a line muking an LIngle (n:/2 - i')

with the XI-axis giving rise to W'lveS trLlvelling in the plane Lit Lin angle -;' with the XI-axis
(sec Fig. I). The displacement components 1I,(.\·l. X!. X.1o I). (i = I. 2. 3). und the stress
components l'I(XIo x> X). I). U.j = 1,2,3) ut time I in each ILlyer of the ILlminate then become
functions II,(XI.X.I) and I,,(XI.X.I) of XI.I and x=x1sini'+xlcOSi'. only. The stress
components .lre rel'lted to the displacement components through the stress-strLlin relutions
appropriate to cLlch luyer and these rcl.Jtions arc given in detuil by Buylis and Green (1986a).
The stress componcnts and displLlcement components must satisfy the equations of motion
in each layer. together with continuity conditions at the interfaces between (uyers. traction­
free conditions on the bottom surface of the plate and the specified loading conditions on
the upper surface.
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Fig. I. Gl:omctry of lhl: laminate and lht: impal:l Ill~lding.

In order to solve the problem, it is convenient to work with the quantities U, Ji, W,
T'l' which are obtained from the displacement components Ill, It> It \ and the stress
components t'l respectively by taking Laplace tr<.msforms with respect to time I and Fourier
transforms with respect to the variable x. These are typified by the equation

( 1)

Thus. U. V, W, and T'l arc functions of the coordinate x I normal to the plane of the phltc
only, but they also involve the Laplace transform parameter .~ and the Fourier transform
parameter k. The equations of motion and stress-strain relations in each layer then reduce
to a system of ordinary differential equations and algebraic relations to determine the
transformed displacements and stresses within the layer as functions of x \. The interface
continuity conditions become a system of algebraic equations relating the transformed
quantities between one layer and the nex.t. Because of the inextcnsibility constraints the
displacement transform ~Vis identically zero in material t and the transform V is identic,llly
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zero in material 2. The governing equations in material I then have the form

dUI d ( 2d).-- =, T,- 1- -, ,ksV,.
dx, Ci ci

where
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(2)

T -~I - ,.
pC'j

C = cos y and s = sin y.

In these expressions. CI' C2. CJ are body wave speeds defined in terms of the elastic constants
of the continuum material (see Green, 1982) and p is the material density. Equations (2)
have the solution

wherc

Y(x.) = P(x, -.il)Y(.i',) (3)

and T denotcs the transpose. Equations (3) relate the value of the vector Y at any level x,
in the layer to its value at some specified level.i. through the propugator matrix P(xI-.i l ).

The clements PII of the matrix P(ll) corresponding to .\'. -.i I =h are given in Table I.
The parameters p ,. P2 and ~ arc defined in tcrms of the phase velocity I' = - is/k =w/k

by the relations

and S" C .. S2. ('2 are defined as

All the stress transforms T,/(xd which do not appear in Yare expressible in terms of the

Table I. Elements of the: propagator matrix P(h)

_(I_:x/P,S, _ i7..rS:
of P:

(I-:x)
- 2sk i(C,-C:)

(I-:x)C, +Cl:C:

ia..rS, ipS:
-- +(I-:z)-'-

PI .f

(\
ip,S, il%.fS:

- -:x)-----
of P:
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components ofY(xl) and are given by the relations

(4)

In material 2 the governing equations may be written as a system of four first order
eqllations simil..tr to eqns (2) but involving T~. U~. ~V~ and R~ = THird as dependent
variables. Introducing the vector

the solution of these equations has the form

(5)

where .\' 1 is some specified level in the layer of material 2. x I is any other level in the same
layer and Qlx 1 -.\",) is the propagator matrix for material 2. Thc clements of q,/ of Q(h)
may he ohtained from those of P(h) by making the substitutions indicated in Table 2.

The quantities appearing in Tahle 2 are defined by the expressions

" " '" , " ..,.. .,., .,.... 2c;c~
Cilfi = CiC-+CiS"-I.'", c~q~ = c~c·+cis--I'-. ex = 1- , -"

(1" -Cis')

'<;1 = sinh tflklt, ('I =cosh 'II kit, 52 = sinh q~kh, (:~ =cosh q~kh.

The remaining stress transforms at the level x I in this layer may be exprcssed in terms of
the components of Z(XI) through the equations

(6)

The intert~lceconditions at the mid-plane of the plate between the two layers of material
I require the continuity of all three components of the displacement transforms and the
continuity of the transformed stress components TII(=rdTI), T I2 (=rdp l ) and Til'
Since the displacement transform WI is zero in both layers and the stress transform T 13 is
given in terms of U I by eqns (4), these conditions arc satisfied by the continuity ofY across
the interface. At the interfaces XI = -It and XI = It between materials I and 2, we again
require continuity of the three components of thc displacement transforms but for the
transformed stresses it is only necessary to ensurc continuity of the normal component Til'

This is bec..tusc the inextensibility constraint WI = 0 in material I allows the possibility of

Tahlc ::!. Transrormation taking clements p" into 'I"

P,-'l"
Sl-'~"

p,-q,.

C,-C,. s~ - .~~.
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a discontinuity in the transformed component of traction Til across the interface (with an
associated singularity in T33 ) whilst the inextensibility constraint V2 = 0 in material 2 allows
a discontinuity in TI2 across the interface (with an associated singularity in T::). We apply
these conditions in two stages choosing first to satisfy the requirement that V, = 0 at
XI = ±h where material I is bonded to material 2. Using the solution (3) with .i, = 0 and
choosing X, =h and XI = -h gives

Y(h) = P(h)Y(O), Y( -Il) == P( -h)Y(O)

and the conditions VI (h) =o. V,( -Il) == 0 yield the equations

P41 T I (0)+P4: PI(O)+P43 U I(0) +PH VI(O) == O.

P4, T1(0)-P42P,(O)-P43UI(O)+P44 VI (0) =O.

(7)

(8)

In eqns (8) Pij == p,j(h) and we have used the fact that P41 and PH are even functions of h
whilst P4: and PH are odd functions of h. Equations (8) may be solved to give P,(O) in
terms of UI(O) and to give VI(O) in terms of T,(O) so that the vector Y(."I) at any point in
the core may be expressed in terms of the vector X,(O) = (TI(O)UI(O»T only. In particular
we may use the solutions ofeqns (8) in eqns (1) to determine the vectors X1(11) and X1( -h)
at the upper and lower interfaces in the form

(9)

where the components of the 2 x 2 matrix R arc given by

(10)

and

(II)

The second of eqns (9) may be inverted and combined with the first to give the relation
between X1(1I) and XI( -II) as

( 12)

where

(13)

In the upper layer of the plate. which consists of material 2. we use eqn (5) with .i I = h
and X I == 211 to relate the vector Z(2h) at the top of the laycr to Z(h) at the bottom.
Continuity of tangential displacement at the interface with matcrial I at : == It gives
W:U,) = O. When this is combined with thc requirement that the tangential stress orthogonal
to the fibres must vanish at the upper surface. R:(2h) =O. we obtain the equation

(14)

Equation (14) allows us to express Rz(h) in terms of TzU') and U:(1t) so that Z(h) and
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therefore Z(x,-h) for any h ~ XI ~ 2h may be expressed In terms of X!(h) =
(T!(h)U!(h»T. In particular we have that at the upper surface

where the components b
"

of the 2 x 2 matrix B are given by

( 16)

Adopting the same procedure in the bottom layer of the plate gives the equation

( 17)

which may be inverted to give

The matrices Rand 8 are given in terms of the clements of R by the expressions

( 18)

_ ( h"B=
-h!,

( 19)

and eqn (I X) involves using the result that det 181 = I.
The only continuity conditions still to be satisfied at the interfaces x I = ± II give the

relations

(20)

and when these arc combined with (18). (12) and (15) we obtain

where

BRRB
M = -----

det jRI'

If the upper surface of the laminate is subject to the impulsive line load

/ I I (x. t) = pdc)(x)c)(t)

(21 )

(22)

(23)

where i;(') is the Dirac delta function. and if the lower surface of the plate is traction free,
we have that

Substituting from (24) into eqn (21) yields

m,,(k..~) I
U !(211) = .. (k .)' U,( - 211) = --(k°--;).. '

mIl's' ml! ',S

(24)

(25)

where m'l are the components of the 2 x 2 matrix M. Equations (24) and (25) when combined
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with (18). (IS) and (9) allow us to determine the transforms of normal stress and normal
displacement at each of the interfaces. The transforms of the remaining stress and dis­
placement components may then be obtained either at the interfaces or at any interior level
in each lamina. using eqns (3). (4). (5). (6). (8) and (14) as required.

Here we shall be particularly concerned with the stresses at the upper and lower
surfaces XI == ±2h at the interfaces XI == ±h and at the mid-plane XI == O. At the upper
surface X I == 2h the normal stress t II is prescribed by eqns (23) and the corresponding
transform T~ (1./z) is given by (24). The tangential stress t, J is zero corresponding to
R~(2h) == 0 and the remaining stress transforms are given by eqns (6) in which T~. W2 and
U2 are all evaluated at XI == 2h. The non-zero term for Td2h) in eqns (6) corresponds to
the limiting value on approaching the surface from within the material and this stress
component jumps discontinuously to zero at the surface with an associated singularity in
the reaction stress T~2(2h) in the surface. (n eqns (6) the values of T2(2h) and U2(2h) are
given by (24) and (25) and W 2(2h) may be derived in terms of these in the form

q '1U,(2h) -q'l T,(2h)W2(211) == ~.. ~.

qH

q41 m22(k.s)
== qH m I2 (k.s)

(26)

provided (/ H -# O. The term lf41/lfH on the right hand side ofeqn (26) makes no contribution
to the inverse transforms and may be neglected. The same holds for the term T 2(2h) == I
appearing in some of the expressions in eqn (6) and. in terms of the quantities which
contribute to the inverse transforms. the expressions for the stresses at the top surface
X I == 211 arc

(27)

At the upper interface. XI == h. the transforms of normal stress component T2(11) and
normal displacement V 2(II) immediately above the interface are obtained by inverting eqn
(15) and using (24) and (25). These yield

hi l,n"
V(h) == -b 21 + ----.

m l 2
(28)

and continuity at the interface implies that immediately below the interface (in material I)
TI(h) == T2(II) and VI(lI) == V 2(h). Continuity of tangential displacements at the interface
requires that W 2(h) == 0 and VI(h) == 0 and when these are substituted into eqns (6) and
(4) respt..'Ctivcly we obt'lin the stress transforms immediately above the interface n/l and
immediately below the interface nil in terms of T2 == T, and V 2 == VI' These are

, ,
(21 CjCi

T" == -p -, T, .
• - Cj·

(29)
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(30)

where the e:'\pression for T'.,:" = pc~R:(lr) is obtained from eqn (14) and the e:'\pression for
T\'~ = pc~P, (II) is obtained from (7) on using (8). It is clear from these expressions that all
the stress components other than T:, are discontinuous at the interface.

At the middle surface. \", = O. the transforms of normal stress T,(O) and normal
displacement (f,(0) are given by

(3 I)

and the transforms of tangential stress P,(O) and tangl.:ntial displaceml.:nt 1',(0) are obtainl.:d
in terms of thl.:se from e4ns (R). which yidd

I .dO) = - fll' T dO).
fI'l

(32)

The rl.:lllaining strl.:SS transforms at the middk surfacl.: an: obtainl.:d rrom eqns (4) with (i,.

1',.7"1 givcn by (1) and (32).

Procl.:l.:ding in thl.: same W;\y. it is possible to ontain e:'\prl.:ssions for thl.: strl.:SS transforms
on l.:ithl.:r silk of thl.: lower interfacl.:\', = --ft and at the hot tom surface \" I = - 2ft .

.\. INVFRS(ON 01' TRANSFORMS

lh: procl.:dure outlined in the preceding section leads to l.:xpressions for the stress and
displacement transforms throughout the laminate and it is neCl.:ssary to invert these trans,
forms in order to recover the dependence on \" 'lnd I. Typical of thl.:sl.: in thl.: !irst of l.:qns
(25) which rdatl.:s to the normal Wmplllll.:nt of displaceml.:nt on thl.: upper surfal.:e of thl.:
platl.: and for whieh the invl.:rsion integral has the form

(33)

Thl.: intl.:gral with respect to .1' may be l.:valuatl.:d in tl.:rms of thl.: rl.:sidul.:s of the integrand at
the l.eros of the function III, :(k •.~) in thl.: left half planl.:. The l.:quation

(34)

is thl.: dispersion equation for plane wave propagation in thl.: laminate. wrresponding to
waves travdling in the direction of thl.: normal to the line load under tral.:tion free conditions
at the two surfat:es of the plate, This equation has an infinite number of pairs of roots,
W, = ±w,(k) (j = I. 2•... ), each pair corresponding to forward and backward travelling
waves associated with one branch of the dispersion l.:urvl.:. In tl.:rms of thl.:sl.: solutions. eqn
(33) bl.:comes

If' ~ {"''' (k , .1') k111 (2ft. x. t) = "'- dk L.. .'.•.- -;---. e" ,
_n:, ,-I dlll,:/d.l' "II} (35)
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Both mdk.'s) and mcc(k.s) are even functions oU and eqn (35) may be written as

where

577

(36)

(37)

It may also be shown that R,(k) is an even function of k and eqn (36) may be further
simplified to give

..,. "f"
It, (2/z. x. t) ::::: =- L R,(k) sin w,(k)t cos kx dk.

7t 1=' n

(38)

The expression (38) consists of a sum of integrals. one along each branch of the dispersion
curve. In general both the integration and summation have to be carried out numerically
and we must therefore limit the runge of integration to some tinite interval (0. k) and restrict
the sUll1mation to a tinite number of branches j::::: I•. ". P of the dispersion curve. To carry
out the numeric~ll evaluation we choose the values for the material parameters that were
previously employed hy Green mid Baylis (1988) and which relate to a carbon fibre/epoxy
resin composite. For the inextensibk model. these are did ::::: 4.297 and did == 2.301. We
have taken as unit of length the thickness" of each ply and as unit of time the quantity
hic,. For a given value ofi'. the dispersion equation has heen solved for 18 modes (p:::: 18)
with values ofkll ranging from zcro to 20 (k :::: 20/11). Full details of the numerical procedures
are to he found in Green and Buylis (1988).

4. RESIJLTS AND DISCUSSION

The nature of transient wave propagation in a plale of isotropic elastic material has
bccn cxamined in considerable detail by Junes (1964). Weaver Hnd P~IO (1982) and by
Vasudevan and Mal (19S5). The paper by Jones deals with line impact loads which generate
all antisymmetric (flexural) motion of the plate Hnd .Itlention is focussed on the bending
stress at the upper surface of the plate. The solution is derived in terms of the normal modes
of Ilexural wave propagation. with the stress being expressed as a sum over the modes of a
set of inlinite integr'lls with respect to the wavenumber. in a form which is unalogous to
the expression (38), Jones ev~lIuates these integrals using the stationary phase approximation
and gives Hcomparison between the contributions of euch of the first four modes. Weuver
und Pao (1982) .lIso adopt the method of normal modes to obtain expressions for the
displacements due to any time dependent body force. They examine in detail the normal
displacement at the top and bottom surface of the platc produced by a verticnl point force
imposed on the top surfaec at time t :::: 0 and held constant for t > O. These authors also
discuss the solutions in terms of the stationary phnse approximntions. In addition they
carry out a numerical integration over the first 10 modes. presenting results showing the
individual contributions ofe.lch of the first five modes as well ,IS giving the overall response
due to all 10, The paper by Vasudev.tn and M~lI (1985) deals with the transient surface
displacement due to .10 internal dislocation source ~lIld also examines the samc sur/lice point
load problem as that treated by We~lver and Pao. These authors lise transform methods and
the propagator matrix technique to obtain the solution. The transform inversion is curried
out in a dilTerent order from that adopted here. with inversion with respect to wave number
k being carried out !irst to yield the spectral response which is then inverted by Fast Fourier
Transform. The separate contributions from individual modes and the overall response
obtained by summing over modes show excellent agreement with those of Weaver and Pao.

It is well know that the parameter which governs pulse propagation in dispersive media
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is the group velocity c. = dw/dk (see e.g. Achenbach. 1(73) and the method of stationary
phase brings out the f~ct that the pulse amplitude dt'Cays .IS r I : at large times. A slower
rate of decay is associated with the wave fronts. which correspond to the stationary values
of the group velocity. These fronts are termed advancing (or mode arrival) when the group
velocity is a local maximum and receding (or mode disappearance) when the group velocity
has a local minimum. When the stationary value occurs at a finite wavenumber k. the form
of the disturbance is given by the Airy function and the amplitude decays as I I' at large
times. When the stationary value for the group velocity is approached asymptotically as
k .... x. the wave front may be associated with a finite or an infinite discontinuity. depending
on the behaviour of the integrand for large values of k.

We shall shortly present our detailed results for the variation of stresses at various
points through the thickness of the laminate. Before doing so, we examine the contributions
of individual dispersion curves to the stress response at the top surface of the plate.
interpreting these in terms of the associated group velocity. \Ve take as our example the
shear stress component II: which jumps discontinuously to a zero across the boundary and
for which the limiting value of the transform T ,: at the upper surface within the material
is given in eqn (27) as pdsikm~~!ml> Here we discard the factor pds and numerically
invert the term ikm~:!ml ~ to obtain the response r(x. t) in the approximate form

(39)

where the residue RJ(k) is detlned in eqn (37). All the other stress transforms at the upper
surface. given by cqn (27). involve the tcrm ikclHm~~/'1 ~~m 1 ~ and since 'I H C/41 is of order
one the expression (39) may be taken as representative of the stress state at the top surface
of the pl"te.

The results which we shall shortly present relate to two values of }'. namely 30 and
60' and in Table 3 we list the quasi-dilatational 'lnd quasi-shear wave speeds in both
material 1 and material 2 at these angles. These speeds arc those associated \vith the
vanishing of PI. 1', and 'II, Cf, and they arc given by

Also shown in Table 3 arc the surf4lce wave speed at e4lch angle in material 2. 1'~1t and the
plate wave speed associ4lted with each angle. ('II' This laller is the limiting long wavelength
velocity for the fundamental mode of anti-symmetric (llexural) waves in the plate and it is
derived in Baylis and Green (1986b). These speeds are given by the expressions

where ('It is the Rayleigh wave velocity for an isotropic material with dilatational wave
speed c, and shear wave speed C!. We havc scaled each of these speeds in Table 3 by ('1. so
that thc distance travelled (in units of il) m4lY be obtained by multiplying directly by the

Table 3

., 30 60,

t'ld 0.lI07 0.940

t·" 0.678 0.555
I':J 0.940 0.!m7
l':. 0.555 0678
l':R 0.535 0.673
t"u 0.545 0.596
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scaled time (measured in units of hjc.). It may be seen from Table 3 that the surface wave
speed in the outer material (t":R) is less than the quasi-shear wave speed in the inner material
(t"I.) for y = 30° but that for y = 60~ the speed VI. is the lowest of all the wave speeds
tabulated. We have discussed the consequences of this on the limiting speeds of the dis­
persion curves in the short wave limit (kh.-. 'Xl) in our paper (Green and Baylis, 1988a).
There we show that, for the particular numerical values employed here, the short wave
limiting speed of both the fundamental symmetric and fundamental anti-symmetric modes
is l':R, for values ofy < 46.3-'. For all other modes the short wave limiting speed is the lower
of fl. and I':., which therefore gives the limit as I':. for y < 45' and I'ls for y > 45'. We
accordingly evaluate the integrals !,(x, t) appearing in eqn (39) for values of y = 30) and
i' = 60~ which provides an example ofeach of the two possibilities for the limiting behaviour.

In Figs 2-7 we display plots of the dimensionless group velocity, cgfc, versus the
dimensionless wavenumber kh. for a number of modes at both angles of propagation. Also
shown in the same figures are the plots of the residue factors kRj(k) for these modes. All
the residue factors are negative and with the exception of Fig. 2 are plotted to the same
scale. [n order to retain the same range in each figure the factors plotted in Fig. 2 are a half
of the actual values. Figures 2 and 3 relate to the fundamental mode of anti-symmetric
motion at y = 30' and y = 60' respectively. The two group velocity curves are similar. Each
starts in the long wave limit (kh = 0) at the appropriate plate speed l'a. each rises to a local
maximum, falls to a local minimum and finally rises towards an asymptotic value as kh -­
oc (short wave limit). [n Fig. 2 this short wave limiting speed is 1'2R whereas in Fig. 3 the
limit is I'". The residue factors in the two figures arc strikingly different. Both factors have
the same value at kh = 0 (the values shown in Fig. 2 must be doubled to obtain the residue
factors) but whilst the factor in Fig. 3 drops to zero at the group velocity minimum and
remains zero thereafter, that ill Fig. 2 continues to increase and approaches a straight line
as kh increases. The fundamental modes of symmetric motion differ from these only in the
long wavelength limit kh -+ 0 where, at each angle. the group velocity drops from a maximum
and reaches a sm.tll negative v.t1ue at kh =0 and the residue f~lctor at each angle drops to
zero at kit = O. figures 4 and 5 show plots relating to the second anti-symmetric mode at
y = 30 and y = 60' respectively. Here the limiting group velocity as kh .-. 00 in Fig. 4 is
the quasi-shear speed in the outer material, 1':" whilst that in Fig. 5 is the quasi-shear speed
1'1. in the inner material. Once again there is a striking difrerence between the residue factors
in the two figures. The curves shown in Figs 6 and 7 arc the group velocity and residue

o s

1. S S. 0 , S 10. 0 J 2. S IS.O I' S 20 0

kh

-0. S

kR,

'1 0

-I. S

-2.0

-2. S

Fig. 2. Group velocity and residue contribution for fundamental mode of anti-symmetric motion
at}' = 30'.
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Fig. 3. Group v'e!ocity and residue contribution for fundamental mode of anti-symmetric motion
at i' == 60".
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Fig. 4. Group velocity and residuc conlribulion for second modc of anli-symmetric motion at
f "" 30',

-\. 0

10 0 II,S 15 0 17, 5

kh

10

Fig. 5. Group vclodty and residuc contribution for sl.'Cond mode of anli-symmctric motion at
i' "" 60',

S 0 I, 5 17. 5

kh

10. Q

Fig. 6. Group velocity and rcsiduc contribution for fifth mode of anti-symmetric motion at i' "" 30 .
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Fig. 7. Group velOl:ity and residue contribution for fifth mode of anti-symmetric motion at " = 60'.

factor curves for the fifth anti-symmetric mode at }' = 30' and y == 60\ respectively. These
are chosen as being typical of the curves for the higher harmonics and in both figures the
group velocity curves exhibit high and low velocity plateaus on which the speeds are close
to the higher and lower of the two quasi-shear speeds l'h and l'~,. It may be seen from Fig.
6 that at }' = 30" the high speed plateau (which corresponds to the inner quasi-shear speed
VI,) is associated with a small residue factor. where.ts the low speed plateau (outer quasi­
shear speed V2,) is accompanied by a relatively large residue factor. Figure 7 shows a huge
residue associated with the high speed plate'llI (which is now the outer quasi-shear speed
Vh) whilst the residue is small or zero at the low speed (l'I,)'

Figures 8-13 show the individual contributions r,(x.t) to the upper surface shear stress
function r(x. t) arising from modes 1.2 and 5 of the anti-symmetric motion at}' =30' and
}' = 60". Each of these figures shows the variation of the contribution r j as a function of

2\

20

15

10

T
J

x/h

10 15 JO J\ '0

-5

-10

-15

-20

Fig. 8. Stress contribution due to fundamental mode of anti-symmetric motion at y = 30'.
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T[

x/h

-\

10 15 20 10 15 40

Fig. 9. Stress contribution due 10 fundamental mode of anli-symmetric motion at ;' = 60 .

x/II at t = 401l/cl' We point out that the plots have differing vertical scales. reflecting the
relative contributions from each mode. Figures 8 and 9 relate to j = I and to the angles
"I == 30' and "I = 60' respectively. Figure 9 shows a small amplitude isolated disturbance
travelling with the plate speed l"o whereas the graph in Fig. 8 is completely dominated by
the large amplitude high frcquency contribution which has travelled a distance x ~ 21.511
corresponding to the speed r~R of the Rayleigh surface wave. Extending the integration range
in eqn (39) from k to 00 ;.md assuming the residue factor shown in Fig. 2 to continue along
the linc.lr portion would lead to a singularity in the stress contribution which travels with
the surface wave speed r~R' The high frequency oscillation shown in Fig. 8 is a manifestation
of the Gibos' phenomenon. brought about by abruptly terminating the integration at k
where the residue factor is non-zero. A similar effect is evident to some extent in Figs 10
and 12. which both relate to y == 30' and which correspond to j = 2 and j = 5. respectively.
The corresponding residue factors. shown respectively in Figs 4 and 6. arc non-7.ero at the
cut-oIl' limit. k == 20/11. imposed on the imegrals in eqn (39). Figures 9. II and 13. which
refer to "I == 60' and j = I. 2 and 5 respl.'Ctivcly. on the other hand. show no trace of this
phenomenon and it may be seen from Figs 3. 5 and 7 that in each of these c.tses the residue
factor is zero at k = k. In evaluating the total responsc summed ovcr all the modes we have
eliminated this high frequency oscillation by usc of a windowing function which brings the
residues smoothly to zcro at the cut-oIl' k (scc Baylis and Grecn, 191'18 for dctails).

The stress variation shown in Fig. II displays both a forward facing Airy function

T
2

-\

-2

10 10

x/h

'0

-1

Fig. 10. Stress contribution Juc to second modc of anti-symmctric motion at ;' '" 30 '.



Stress variation due to an impact line load 583

-I

to t5 )0 J5

x/h

40

Fig. 11. Stress contribution due to second mode of anti-symmetric motion at , == 60 .

oscillation for x> 24h and a backward facing Airy function oscillation for x < ISh, which
are associated with the local maximum and local minimum values of the group velocity,
respectively. Figure 10 also shows a backward facing Airy function for x < 18h, associated
with the local minimum of the group velocity at kh ::::: 2.25 but the main feature is again a
large amplitude high frequency contribution in the region 20 < x/h < 22. Of the three
modal contributions shown for y = 60" the highest stress amplitude is to be found in Fig.
13 and is associated with the large residue factor shown in Fig. 7 for the high speed plateau
region 12.5 < kh < 17.0. A large residue associated with such a plateau region occurs for
values ofkh < 20.0 in the harmonics) = 3 to) = 6 and the magnitude of the residue appears
to increase linearly with wavenumber. If this behaviour were to persist for k < k < 00 then
the cumulative elTect of all the modes, when integmted over all values of k. would give rise
to a singularity in the stress tr'lvelling at the speed t'2. of the quasi-shear wave in the outer
layer. The main contribution from the harmonic) = 5 at 'I = 30", shown in Fig. 12. arises
from the constant residue factor associ.tted with the low speed plateau which extends from
kh ::::: 16 up to the cut-on" point. A constant residue term of this kind is associated with the
limiting low velocity plateau of the h.trmonics) = 3 to) =6 in the range up to kh = 20.0
and if this persists for k < k < (Jj then the integrated cumulative effect over all the harmonics
would here also give rise to a singular stress travelling with speed l'2, of the quasi-shear
wave in the outer material. The detailed individual responses shown here only for the anti­
symmetric modes arc to a large extent reproduced in the symmetric modes. In particular
the fundamental symmetric mode has a large surface wave contribution for y = 30" but a
very small stress level at 'I = 60". The upper surface n:sponse of the plate is obtained by
summing the symmetric and anti-symmetric modes whilst the lower surface response is

-I

-1

10 15 JO

x/h

Fig. 12. Stress contribution due to fifth mode of anti-symmetric motion at y = 30".
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Fig. 13. Stress contrihution uue to fifth moue of ;mll-sytnmctric motion at t' = nO .

obtaim:d by <;uhtracting. In consequence the surface wavc contributions reinforce eal.:h
other at the upper surface and cancel out at the lowl.'r <;urface.

We turn now to examine the <;tre<;s variation through the plate u<;ing re<;ults obtained
by summing over nine anti-symmetric modes and nine symmetric modes. Our first sci of
curves, Figs 14 and IS, shows the variation of the shear stress component /) 2 as a function
of dis[anl.:e x/II from the impact line, at a time of / = 40h/e I. after imp'lct. Each figure consists
of live curvcs showing the stress at the upper surface, the upper interl~lce, the mid-surface,
the lower interface and the lower surface, respectively. The non-zero values at the upper
,lIld lower surl~lces arc the discontinuous values parallel to the fibre direction, They an:
calculated from eqn (27) at the upper surface and its equivalent at the lower surface, The
values a[ the interfaces refer to the outer material in each case and arc calculated from eqn
(29) at the upper interface and its equivalent at the lower. At each of these inll.:rfaces there
exist discontinuities in this stress component and the values in the inner material may be
determined from eqns (30) but arc not displayed hac. Finally the mid-surface value is
derived from [he first of eqns (32) using the e,'{pression (31) for (/\(0). Figures 14 and 15
n.:fer [0 propagation at angles (= 30 and 60', respectively. The second set of curves, Figs
16 and 17, has the same format as the lirst set and again refer to the stress component I) 2,

bu[ now at time I = 2001l/e I after impact. The most obvious feature of thee two sets of
curves is the large stress amplitude to be seen on the upper surl~lce for propagation at angle
30 (Figs 14 and 16). The distance of this disturbance from the impact point shows in each
case that it is associated with the Rayleigh surface wave which propagates at this angle but
whidl docs not exist at i' = 60 (Figs 15 and 17), Another signific.mt feature to be seen in all
the curves is the low level of shear stress at the mid-surface as compared with the level in
the outer material .It the interfaces and at the upper and lower surfaces. This high shear
stress load in the outer layers is consistent with the shearing behaviour of inextensible
materials under bending loads (sec Rogers and Pipkin, 1971) since the shear stress com­
ponent /) 1 is associ.tted with the inextensibility direction in the outer layers. In all these
tigures there is some disturbance evident at distances associated with the faster of the two
q~msi-shear speeds ,It each angle. For i' == 30 this fastest wave speed is that in the inna
material (1"1,) and the associated stress level is small. with the main pulse travelling at a
speed dose to that of the quasi-shear wave in the outer material (1':,). For { = 60 C it is the
speed 1"1, in the outer material which is the greater and there is in this case a signilicant
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stress level associated with this speed which gives a pulse extending over a much longer
distance than that for}' = 30-.

The next two sets of curves (Figs 18 and 19 and Figs 20 and 21) show the variation of
the shear stress component 113 with distance from the impact line at times 1 = 40h/cl (Figs
18 and 19) and 1 = 200hjcI (Figs 20 and 21). These again relate to angles of propagation
,'= 30' (Figs 18 and 20) and}' =60 (Figs 19 and 21). The three curves displayed in each
figure give the stress at the upper interface. at the mid-surface and at the lower interface
respectively. At the upper surface and the lower surface. the shear stress component 113 is
zero. In each of these figures. the interface stress is calculated in the outer material (material
2), using the expression in eqns (29) at the upper interface and its equivalent at the lower
interface. There is a discontinuity in this stress component across the upper and lower
interface and the value in the inner material at the upper interface may be determined using
eqns (30). but this is not displayed here. We note. however. from eqns (29) and (30) that
the stress component l\'j in the inner material [eqns (30)l is obtained from the stress
component 11

11at the interface in the outer material [eqns (29)] by multiplying by the factor
cot}' so that the qualitative behaviour of the stress lW may be deduced from Figs 14-17.
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Fig. 18. Stress component f" at time f '= 40IJ!c, for 7'= 30' at: (a) upper surface. (b) mid-surface.
(c) lower interface.



10

t 1 J

J

51 III
5

t IJ I , " n.

I . --

lI/h

lI/h

n

............ (al

"_11
I 'ill

3a~ JS
(a) -5

_a

j

-5
\I

-lil

~ 51
~

'j

~

I , I I

(hI
(hI

~ ~ ~
~ W 7 IW

-s' '~

JS -a
(e)

'j

(e)
Isa

-5
·5

Fig. It). Strcss componcnt 1.\ al lilllc I = JOII.·c, for i' = 60 al: (a) upper surface, (h) mid·surface,
(e) lower interface.

Fig. 20. StrL'Ss component 111 at time I = 2001l/£, , for y = 30' at: (a) upper surface, (hI mid-surface,
(cl lower interface.



Stress variation due to an impact line load 589

In discussing the sets of curves displayed in Figs 18-21, we recall that the stress
component t I J refers to the shear stress parallel to the fibre direction in the inner material.
Figures 18 and 20 which relate to the angle 30' clearly show that the effect of the Rayleigh
surface wave is transmitted down through the upPer layer to the first interface but that this
effect dies out within the inner material and is not apparent at the mid-surface nor at the
lower interface. At angle 60' (Figs 19 and 21). the stress level throughout the inner core
material is low, showing that there is little shearing along the fibre direction.

The sets of curves in Figs 22-25 relate to the in-plane stress component t~~. Again.
Figs 22 and 23 are at time t for which t =40h/c, and Figs 24 and 25 correspond to
t:= 200h/CI' Each figure consists of four curves which give t~~ at the upper surface [eqn
(27)]. at the upper interface in the outer material [eqns (29)]. at the lower interface in the
outer material and at the bottom surface. It may be seen from eqns (27) and (29) that the
stress component t JJ at the outer surfaces and at the two interfaces in the outer material
are obtained from t11 on multiplication by a factor. Furthermore. eqns (30) show that in
the inner material at the interfaces the stress compon,ent t lJ is equal to the component t11

at the same interface in the outer materhd. These stress components all refer to the con­
tinuous stress value within the respective materials but there also exist singular stresses
along the fibres at each interf,lce and at the outer surfaces. Thus there are singularities in
tW for the outer material at x I = ±21t and x I = ± It with singularities in t\": in the inner
muterial at X, = ±It.

The curves shown in this set of figures correspond to propagation at angle 30' (Figs
22 and 24), and 60' (Figs 2J and 25). The main feature here also is the stress level associated
with the Rayleigh surface wave at 30' which docs not exist at 60'. Another significant
feature. evident in all the figures but particularly so in Figs 24 ,lOd 25. is the presence of a
slow moving low frequency disturbunce at the interface which is not present at the outer
surfaces,

Finally. in Figs 26 and 27 we present a eompurison between the shear stress levels til

(hI
158

.,

(cl

Fig. 21. Stress component t p at time t = 200lt/c, for "/ = 60' at: (a) upper surface. (b) mid-surface.
(c) lower interface,
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Fig. 22. Stress component t11 at timet = 40"/c, for)' = 30 at: (a) upper surface. (h) uppcrinterface.
(c) lower interf;lce. (d) lower surface.



Stress "ariation due to an impact lin.: load 591

IIII 15 J8

x/h
(al

(b)

tel

18 38
Cd)

rig. 23. Sln:ss componenl/!l at lime I = 40"!,', lor y .. 60' al : (al upper surface. (bl upper interface.
(clluwer interface. (dllower surfa~'e.

in the inextensible materi'll (Fig. 26) and in the extensible material (Fig. 27). These figures
relate to the fundamental mode of anti-symmetric motion for propagation along the fibre
direction (y = 0). Each figure consists of five curves. associated with five different values
of the wavenumber (kll). which correspond to wavelengths ranging from approximately
7011 to approximately 0.811. All the curves show the variation of the shear stress component
[13 through one half of the plate as a function of scaled distance xl/h from the mid-surface.
The numerical values [1.1 are. in each case. scaled by the value of the bending stress
component at the same wavelength calculated at the outer surface. [13' With the exception
of curves (a), the corresponding curves in each figure show a remarkable similarity except
for the narrow band in the region of the interface (.'Cdh ::= 1.0). where the inextensible
material exhibits the discontinuity and the extensible material shows a rapid variation of
shear stress in order to maintain continuity. Curve (a) in Fig. 26 shows a very high level of
shear stress in the core material as compared with that of curve (a) in Fig. 27. This is a
rellection of the fact that. in the long wavelength limit. the inextensible material is incapable
of sustaining the St. Venan! bending mode associated with a linear variation of normal
stress [H through the thickness but deforms rather through shearing (Rogers and Pipkin,
1971). Further detailed comparisons of stress levels are to be found in Baylis (1986).
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-:\

Fig. 25. Slr~ss componenl /~: at lime / ::: 200111('1 for j' "" 60 at: (a) upper surface. (b) upper
il\l~rfal:e. (e) lower inlerfill:c. (d) I"wer surface.
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Fig. ;'7. Variation of shear stress 11.\ through a four-ply plate not subjecl to the ine~tensibility

constraint. (a) kit = 0.Q75. (b) kh = 1.374. (c) kh = 1.7::9. (d) kh = 3.669. (e) kh = 7.530.
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