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Abstract—The propagator matrix method together with the integral transform formalism is
employed to derive the transicnt stress response in a fibre composite plate due to a normal impulsive
line load acting on its upper surface. Each layer of the composite is modelled as a transversely
tsotropic elastic material which is inextensible along the fibre direction. The transform solutions are
mverted numerically using data appropriate to a particular carbon fibre/epoxy resin composite. A
discussion is given of the contributions from the individual modes associated with harmonic waves
in the laminate, in terms of the variation of group velocity with wavenumber in the mode. Detailed
plots are presented showing the stress varkition with distance from the impact line at two different
nstants of time. These plots show the stress levels at the top and bottom suface of the plate, at the
mid-surface and at the upper and lower interfaces between the plies.

1. INTRODUCTION

This paper extends our carlier results (Baylis and Green, 1988 ; Green and Baylis, 1988a,b)
relating to stress wave transmission due to line impact loads acting on the surface of a four-
ply laminate of fibre reinforced material. Each of the plics is modelled as a transversely
isotropic clastic continuum with the axis of transverse isotropy lying in the plane of the ply
and parallel to the fibre direction. This continuum approach means that we must restrict
consideration to waves whose wavelengths are at least one order of magnitude greater than
the fibre diameter and inter-fibre spacing so that on the scale of the wavelength the
continuum theory might be expected to be valid. A typical material consists of a 60%
volume fraction of curbon fibres embedded in a thermoplastic resin, for which the ply
thickness, i > 125 um, with the fibre diameter and inter-fibre spacing of the order of 6 um.
Thus we are thinking in terms of wavelengths of the order of 1/2 to 1/3 the ply thickness
or greater, for which the non-dimensional wave number kh = 2rh/A (where A is the
wavelength) varies from zero at infinite wavelength to a value of approximately [8 at
A = h/3. For smaller wavelengths of the order of #/10 or less, the continuum model will
break down due to diffraction and scattering by the individual fibres.

There is a considerable simplification in the mathematics to be gained by treating the
composite as inextensibic in the direction of transverse isotropy. This is an idealization of
the fact that the extensional modulus of the continuum along the fibre direction can be of
the order of 100 times that in the cross fibre direction. Mathematically, the effect of the
idealization is to reduce the order of the differential equations and this leads to solutions
involving fewer parameters. A consequence of this reduction in the order of the equations,
however, is that it is no longer possible to satisfy all the interface continuity conditions
between the plies. This leads to a singular perturbation problem, in which it is necessary to
allow the tangential component of traction along the fibre direction to be discontinuous
across the interface, with a consequent singularity in the stress component along the fibres,
associated with a finite load carried by the surface layer of fibres. These stress discontinuities
are to be interpreted in terms of very narrow bands (boundary layers) adjacent to the
interfaces, through which there exist high stress gradients, giving large changes in stress
across the bands. The associated singular stresses along the boundary fibres are to be
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interpreted as high stress levels in the boundary lavers, which contribute finite loads in the
fibre directions when integrated through the boundary layers. It is with these interpretations
in mind that we adopt the idealization of inextensibility to give a mathematically simple
model of our tibre reinforced material. Detailed comparisons between the dynamic behaviour
of the idealized inextensible model and of a continuum model which does not adopt
the mnextenstbility constraint have been presented elsewhere (Green. 1982: Green and
Milosavijevic, 1985 Baylis and Green. 1986a.b). but a comparison of the results of the two
models is included here tor completeness.

In this paper we are concerned with a symmetric cross-ply contiguration of the laminate
in which the two inner lavers are aligned with the tibre directions parallel to cach other and
at right angles to the fibre direction in the two outer lavers. We make no assumptions
about the variation of displacements and stresses through the laminate, such as is done in
engineering theories of plates and shells. Our method is to solve exactly the system of
governing equations appropriate to cach layer, matching the solutions across the interfaces
and satisfying the appropriate boundary conditions at the upper and lower surfaces of the
laminate. The method of solution tnvolves taking Laplace transtorms in time and Fouricr
transforms in the in-plane spatial coordinates of the governing equations of the model, and
yiclds the exact solution for the variation of the transforms with depth throughout the
laminate. The approximations arise only in the numerical methods for inverting the trans-
forms.

The results presented in Baylis and Green (1988) relate to a line impact load oriented
at an angle of 60 to the fibre direction in the outer layers. This generates a plane wave
disturbance travelling in the plane of the laminate along the normal to the line toad. Most
of the results displayed in that paper show the variation of normal displacement at the
upper and lower surfaces of the plate as a funcuion of distance along the direction of travel,
at various time alter impact. The sante paper also reports details of the tangential surface
displacement varation with distance and ol the surface stress variation with distance at
both the upper and lower surfaces of the plate at once fixed time. More detailed results arc
presented in Green and Baylis (1988b) which deals with line loads oriented at 0, 30, 45
60 and 90 1o the tibre direction in the outer layer. In addition to displaying the normal
displacement on the upper and lower surfaces of the laminate, graphs are also presented
showing the variation of the displacement normal to the plate as a tuncuon of distance
from the impact line, at the interfaces between cach of the plies at tixed times. These results
bring out the existence of a Rayleigh surtuce wave disturbance at some orientations of the
impact load and its absence at others.

Here we are concerned with a study of the stresses resulting from the tine load impact
on the upper surtace of the tour-ply pliate. Attention s restricted to impuacts oriented at
30 and 60 to the outer fibre direction sinee these two situations sutlice to show the different
nature ol the responses. The transient stresses are evaluated at the outer surtaces of the
plate, at the mid-plane uand at the intertices between the plies. We display our results as
sets of curves showing the variatons of stress along the normal to the impact line in the
dircction of travel as a function of distance from the impact line. These results refate to two
instants of time. The first of these corresponds to the time taken for the fastest body wave
in the medium to travel a distance of 10 times the overall plate thickness. The second s the
time taken for the same wave to travel a distance of 50 times the plate thickness. The sets
of curves display three difterent components of stress. Two of these are the two orthogonal
shear tractions which act on cach interface and on the upper and lower surfuaces. the directions
of the stresses being parallel to the two (orthogonal) fibre directions. The third stress
component is the in-plane normal stress acting along the fibre direction of the outer layers
and this also is evaluated at the upper and lower surfaces and at the interfaces. Our carlier
work has drawn attention to the existence of a Rayleigh surface type wave travelling along
the top surface lor one range of impact angles and its non-existence outside this range. The
curves shown here confirm this phenomenon and demonstrate its decay with depth into the
faminate. In addition, they furnish comparisons of the magnitudes of the stress components
associated with different angles of propagation and the variation of stress level with depth
in the laminates.
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The object of this theoretical investigation is to determine the nature of the three-
dimensional stress wave transmission in a fibre composite laminate under the assumption
of complete bonding between the plies. Such a situation can serve a two-fold purpose. In
the first place. as pointed out by Mal (1988). it can provide a standard against which to
compure the results of non-destructive evaluation (NDE) measurements aimed at locating
flaws in the laminate. Secondly. it provides information on the channelling of disturbances
within individual lavers and along particular orientations relative to the fibres (see for
example Kreis and Sayir, 1983) and this serves to indicate regions at which impact stress
levels may be higher than would be anticipated from predictions based on simple plate
theories.

The solution techniques developed in our earlier papers allow us to evaluate dis-
placements and stresses throughout the luminate and it is a report on the stresses which
will be our main concern here. In Section 2 we review the solution technique and obtain
detailed expressions for the displacement and stress transforms at the middle surface and
the two interfaces of the four-ply plate. Section 3 contains a brief account of the numerical
inversion of the transforms whilst the detailed solutions are presented and discussed in
Section 4.

Transient problems in elastic waveguides have been extensively studied by Miklowitz
and his co-workers and a comprehensive account of the carly work is to be found in the
monograph by Miklowitz (1978). Among the more recent studies which have a relevance
to the present work we cite the papers of Ceranoglu and Puo (1981). Weaver and Pao
(1982) and Vasudevan and Mal (1985), which treat isotropic plates, and the paper by Witlis
and Bedding (1978), which is concerned with anisotropic plates and layers, These studies all
approach the problem using the full three-dimensional equations of motion. An alternative
technique is to make use of an engineering type plate theory which makes some simplifying
assumption about the nature of the variation of stress through the laminate, and results in
equattions of motion involving only the in-plance space variables. An cxample of this tech-
niguc is to be found in the paper by Chow (1971), who deals with the impact response of
a simply supported laminated plate. This is also the approach adopted in the papers by
Moon (1972) and Sun (1973), who plot the wave fronts due to a point impact on symmetric
and asymmetric angle-ply laminates, respectively. A third alternative method is exemplified
in the papers by Lee er af. (1984) and by Wu and Springer (1988), which both employ the
finite clement numerical technigue to evaluate the transient stresses induced by impact on
composite plates.

2. GOVERNING EQUATIONS AND TRANSIFORM SOLUTIONS

We choose a Cartesian coordinate system of axes with the origin in the mid-plane of
the plate, the vi-axis normal to the plane of the layers, the xy-axis parallel to the fibre
directions in the two outer layers of the plate and the x;-axis parallel to the fibre directions
in the two inner fayers of the plate as depicted in Fig. 1. Despite the fuct that the layers are
all of the same materials, we find it uscful to designate the layers with the fibre direction
parallel to x, as material 1 and the layers with fibre directions parallel to x, as material 2
and denote stress and displacement components in the layers with the corresponding suflix.
The line load which produces the disturbance is taken to be a delta function in time and it
is assumed to act on the upper surface of the plate, along a line making an angle (/2 —+)
with the v;-uxis giving rise to waves travelling in the plane at an angle -5 with the x-axis
(sce Fig. 1). The displacement components (v, voox00), (= 1,2.3). and the stress
components £,{x, X.. X3, ). (0.7 = 1.2.3) at time ¢ in cach layer of the laminate then become
functions u, (v, x. 1) and ¢,(xx.¢) of x\.7 and x = x,siny+.x,cosy, only. The stress
components arce refated to the displacement components through the stress-strain relations
appropriate to cach luyer and these relations are given in detail by Baylis and Green (1986u).
The stress components and displacement components must satisfy the cquations of motion
in each layer. together with continuity conditions at the interfaces between layers, traction-
frec conditions on the bottom surface of the plate and the specified loading conditions on
the upper surface.



tn
-4
(=}

W. A. GreenN and E. RHiax GREEN

Fibre

= direction

Propagation
direction

Impact geometry

V-

Fig. 1. Geometry of the laminate and the impact loading.

In order to solve the problem, it is convenient to work with the quantities U, I, I,
T,,, which are obtained from the displacement components u, w., u, and the stress
components /£, respectively by taking Laplace transforms with respect to time ¢ and Fourier
transforms with respect to the variable x. These are typified by the equation

r.

U(x, .k, §) = f J 'ul(.\'l,x.'l)c e *vdrdu. n
[}]

-

Thus, U, V, W, and T,, are functions of the coordinate x, normal to the plane of the plate
only, but they also involve the Laplace transform parameter § and the Fourier transform
parameter k. The equations of motion and stress-strain relations in cach layer then reduce
to a system of ordinary differential equations and algebraic relations to determine the
transformed displacements and stresses within the layer as functions of x,. The interfuce
continuity conditions become a system of algebraic equations relating the transformed
quantities between one layer and the next. Because of the incxtensibility constraints the
displacement transform W is identically zero in matcrial 1 and the transform Fis identically
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zero in material 2. The governing equations in material | then have the form

dU 3 2c3
—1 = ‘—“:‘ Tl"( C;)ikSVh
dx, «¢1 c;
dv
i I‘ P —iksU,.
dTr k
ot (f_-f_f_‘_“_) U,—iksP,,
dx. c:
d - N kicici+§ 2c3
ds, = [4k’s'(l - i,)+ reord Cf+s ]V,—iks( cv.)Tl’
dx, €1 ey ¢
where
T T,
T,=—4. P=—3%, c=cosy and s=siny.
pes pei

s

)

In these expressions, ¢,. ¢;. ¢y are body wave speeds defined in terms of the elastic constants
of the continuum material (see Green, 1982) and p is the material density. Equations (2)

have the solution

Y(x)) = P(x; —%)Y(%)
where

Y(x,)) = (Tl(-‘:l)Pl(-\Tl)Ul(-"l)Vl(xl))T

3

and T denotes the transpose. Equations (3) relate the value of the vector Y at any level x,
in the layer to its value at some specified level ¥, through the propagator matrix P(x, —%,).

The clements p,, of the matrix P(h) corresponding to x, — ¥, = h are given in Table 1.

The parameters p,, p, and x are defined in terms of the phase velocity v = —isfk = w/k

by the rclations

b
2¢3s?

-

2 2 2 10 22 2.2 k]
cipt = Ast+clct =7, cpi=cistHeii -0t a=1-

and §,, C,, §,, C, are defined as

S, =sinhpkh, C, =cosh pkh, S, =sinhp,kh, C, = coshp,kh.

(UZ _‘.§c2) M

All the stress transforms T,,(x,) which do not appear in Y are expressible in terms of the

Table 1. Elements of the propagator matrix P(h)

ixsS) ip,S, 2a’s IcSl .
2C,+ (1 -2)C, Py +(l-a) p (l-—a) + (1 —2)2p:kS, 2iask(C, -
—
—u-z)'f‘;—‘—'f,:—sz (1=2)C, +aC, 2iask(C, ~ Cs) 21 —a)kp, S, ~
(1-a) [’S| s: (l-’)' l[’s 2
’T(‘;F",T,) -5 (6=C) aCy+(1-2)C; -(1-a)~—f;—'——~—

- 2k ) 5° M

I- [ S 25, i ip,
(_‘ a)i(C;—C'J ( a’(}f—’-’—'i) EE:—S—'+(l—-a)z,-:‘§ (1-2)C,+2C,
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components of Y(x,) and are given by the relations

Ts: = plei—2c3 )- T3+li\3p4c,(l—- w> V..

3
T+ = pcsikeV',, Ty = pciikelU,.

(

T;z = — c :(T|+_II\S'; ) (4)

In material 2 the governing equations may be written as a system of four first order
eqnations similar to eqns (2) but involving T,. U,. W, and R, = Ty/pci as dependent
variables. Introducing the vector

Z = (Tl(xl)Rl(xl)(/2(-"1)”/2(-\‘1})“"
the solution of these equations has the form

Z(.\'l) = Q(.\'] "'.{'|)Z(.\?;). (5)

where ¥, is some specified level in the layer of material 2, x, is any other level in the same
layer and Q(x, —¥,) is the propagator matrix for material 2. The elements of ¢, of Q(h)
may be obtained from those of P(h) by making the substitutions indicated in Table 2

The quantitics appearing in Table 2 are defined by the expressions

I 1 vy Y 3 s ¥ - 2
= CLCTRCWT 0T, O3y = oo e, A= e T
{r-—cis7)

Si = sinh gk, C, =coshq,kh, S, =sinh g.kh, C, = cosh ¢.kh.

2
ciy

The remaining stress transforms at the level x| in this layer may be expressed in terms of
the components of Z(.x,) through the equations

r s

Ty = —p —5 :(1 +2ikeWs),

’[‘:; = f)('%ik.\"’yz, T;z = {}('%i«k.\'U:,
.3 2

T]; =p ‘S( f ﬂ)l 1)T7 ‘+‘4[)L 11,\C<l —_ "";,') LV'! (6)
(o 1

The interfuce conditions at the mid-plane of the plate between the two layers of material
| require the continuity of all three components of the displacement transforms and the
continuity of the transformed stress components Ty ,(= peiTy), Tio(= pciPy) and T,
Since the displacement transform W, is zero in both fayers and the stress transform 74 is
given in terms of U, by eqns (4), these conditions are satisfied by the continuity of Y across
the interface. At the interfaces x, = — /& and x, = h between materials 1 and 2, we again
require continuity of the three components of the displacement transforms but for the
transformed stresses it is only necessary to ensure continuity of the normal component T, .
This is because the inextensibility constraint W, = 0 in material 1 allows the possibility of

Tablc 2. Transformation taking clements p, into ¢,
g P 4

Py Pr=*qs. 21— 1, S ¢
S\“-S:\- C(”‘*C‘]. S:*‘S‘:‘ C:a(":
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a discontinuity in the transformed component of traction T; across the interface (with an
associated singularity in T',) whilst the inextensibility constraint ¥, = 0 in material 2 allows
a discontinuity in T, across the interface (with an associated singularity in T-,). We apply
these conditions in two stages choosing first to satisfy the requirement that ¥, =0 at
Xy = +h where material 1 is bonded to material 2. Using the solution (3) with %, = 0 and
choosing x; = hand x, = ~h gives

Y(h) = P(MY(0). Y(—h) =P(-mY(0) (M
and the conditions ¥,(h) = 0, V,(— A} = 0 yield the equations
PaT i@ +ps: PO +pa: U () +pus Vi (0) = 0,
P T0)—=pa:Pi(0)~ps; Uy (0) +pss Vi (0) = 0. 8)
In eqns (8) p, = p,;(h) and we have used the fact that p,, and p,, are even functions of 4
whilst p,, and p,; are odd functions of #. Equations (8) may be solved to give P(0) in
terms of U,(0) and to give V,(0) in terms of T',(0) so that the vector Y(x,) at any point in
the core may be expressed in terms of the vector X,(0) = (T,(0)U,(0))" only. In particular

we may use the solutions of eqns (8) in eqns (7) to determine the vectors X ((#) and X (- /)
at the upper and lower interfaces in the form

X, () =RX,(0). X,(—=h) =RX,(0), 9)

where the components of the 2 x 2 matrix R arc given by

PraPay PolPas
r E 3 PR 4 - — e T
1= Py Pos 12 = Py Pas
Pl Prifas
Py o= - L gy = g 10
1 =Py o 123 s (10)

and

r el £
ﬁ:( " *"). (1
—ra ra2

The second of eqns (9) may be inverted and combined with the first to give the relation
between X () and X, {(—A) as

-

RR
xl(")=mxl(~h). (12)

5 Far I'n;
R=( ) 13
Fay Ty (13)

In the upper layer of the plate, which consists of material 2, we use eqn (5) with £, = 4
and x, = 2k to relate the vector Z(24) at the top of the layer to Z{/) at the bottom.
Continuity of tangential displacement at the interface with material | at z = & gives
Ws(h) = 0. When this is combined with the requirement that the tangential stress orthogonal
to the fibres must vanish at the upper surface, R,(2h) = 0, we obtain the equation

where

guTa(h) + g2 Ry(h) +q23Us(h) = 0. (14

-t

Equation (14) allows us to express R,(h) in terms of T,(h) and U,(h) so that Z{k) and

8A8 18:%-D
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therefore Z(x,—h) for any A< x,<2h may be expressed in terms of X,(h) =
(T.(A)Us(mM)". In particular we have that at the upper surface

X:(2h) = BX,(h) (15)

where the components b, of the 2 x 2 matrix B are given by

by =gy — 41292 b= g 412923
2 122
ba, =q3.—g':]:—:q:—:~'. b3:=q;;—q’:]:13—}, (16)
Adopting the same procedure in the bottom layer of the plate gives the equation
Xa(—2h) = BX:(=h), (17)
which may be inverted to give
X, (—h) = BX,(—2h). (18)

The matrices B and B are given in terms of the clements of B by the expressions

i by =by B byy by, 19
by hys) " \buy b ) 1

and cqn (18) involves using the result that det |B| = 1.

The only continuity conditions still to be satisfied at the interfuces x, = +h give the
relations
X (=h) = X.(=h, X,(h) =X, (20)

and when these are combined with (18), (12) and (15) we obtain

X.(2h) = MX.(=2h), (21
where
_ BRRB (22)
det |R|

If the upper surfuce of the luminate is subject to the impulsive line load
f (X 1) = peid(x)d() (23)

where 6(*) is the Dirac delta function, and if the lower surface of the plate is traction free,
we have that

T.2h) =1, T.(=2h)=0. (24)
Substituting from (24) into eqn (21) yields

m. (k. 5) 5
mya(k, 5 - U 28)

U,(2h) = (25)

N "‘1:(":})‘

where n,, are the components of the 2 x 2 matrix M. Equations (24) and (25) when combined
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with (18), (15) and (9) allow us to determine the transforms of normal stress and normal
displacement at each of the interfaces. The transforms of the remaining stress and dis-
placement components may then be obtained either at the interfaces or at any interior level
in each lamina, using eqns (3). (4). (5). (6). (8) and (14) as required.

Here we shall be particularly concerned with the stresses at the upper and lower
surfaces x, = +2h at the interfaces x;, = +4 and at the mid-plane x, = 0. At the upper
surface x, = 2h the normal stress ¢,, is prescribed by eqns (23) and the corresponding
transform T,(24) is given by (24). The tangential stress ¢, is zero corresponding to
R-(2h) = 0 and the remaining stress transforms are given by eqns (6) in which T,. ¥, and
U, are all evaluated at x; = 2A. The non-zero term for T,.(2h) in eqns (6) corresponds to
the limiting value on approaching the surface from within the material and this stress
component jumps discontinuously to zero at the surface with an associated singularity in
the reaction stress T.(24) in the surface. In eqns (6) the values of T,(24) and U,{(2h) are
given by (24) and (25) and W,(2/1) may be derived in terms of these in the form

q;;(/:(zll)-—q“TE(Zh)
4314
_ 4 myy(k.5)  qa

= du LY 2%
Gaa m.z(k.s') qia (26)

W, (2h) =

provided ¢4, # 0. The term ¢4, /¢4, on the right hand side of eqn (26) makes no contribution
to the inverse transforms and may be neglected. The same holds for the term T,(24) = |
appearing in some of the cxpressions in eqn (6) and, in terms of the quantitics which
contribute to the inverse transforms, the expressions for the stresses at the top surface
Xy o= 2hare

wicl Gy,
T5:2h) = — £ A3 2ike {1y -2,
¢ Haa,;
3. G o My,
T23(2h) = peyiks ™22 2k = peliks T2
URFLD] my
5, i M,

At the upper interface, x, = A, the transforms of normal stress component T,(h) and
normal displacement U,(#) immediately above the interface are obtained by inverting eqn
(15) and using (24) and (25). These yicld

nm_m_ﬁfﬂ
'"l"
b 1,
Uth) = —by + ——2, (28)
m,

and continuity at the interface implies that immediately below the interface (in material 1)
T\(h) = Ty(h) and U (h) = U,(h). Continuity of tangential displacements at the interface
requires that W,(h) = 0 and V,(h) = 0 and when thesc are substituted into eqns (6) and
(4) respectively we obtain the stress transforms immediately above the interface 7. and
immediately below the interface T in terms of T, = T, and U, = U,. These are

, . &t L.,
T@=—p-E.Tﬂ=pﬁm—knﬂ.
1

TV =0, T = —pv§<"_*“’:‘"')' T = pcliksU;, (29)
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N

[&Y4
b

Vot

~
[

T¢:I:> =p (('f‘—:('g)T[, TV = —p ( T,

.

~

[’4|T1 1’4 ) (30)

Wo=0, TY = pciikel). W= pe ( S
Pi

where the expression for T/ = peiR-(h) is obtained from eqn (14) and the expression for
T = pciP,(h) is obtained from (7) on using (8). It is clear from these expressions that all
the stress components other than T, are discontinuous at the interface.

At the middle surfuace, v, = 0. the transforms of normal stress 7°,(0) and normal
displacement {7,(0) are given by

hs -h | by,
T,(0) = ("-, |~*:":1_J1) LU0 = (I_I |,+r1|h1|> _l ‘ 1)

Fosly =T sFx J My, Fasry —=ryarsy Sy

and the transforms of tangential stress £,(0) and tangential displacement #7,(0) are obtained
in terms of these from eqns (8), which yield

Pam = " w1y = =), (32)
Py Dy

The remaining stress transforms at the middle surface are obtained from eqns (4) with U,
by, T)given by (31) and (32).

Proceeding in the same way, itis possible to obtain expressions for the stress transforms
on cither side of the lower interface v, =~k and at the bottom surface x| = 2/

LAINVERSION OF TRANSFORMS

The procedure outlined in the preceding section leads to expressions for the stress and
displacement transforms throughout the laminate and it is neeessury to invert these trans-
forms tn order to recover the dependence on v and ¢ Typical of these in the first of eqns
(25) which relates to the normal component of displacement on the upper surface of the
plate and for which the inversion integral has the form

) = 1 . T (kL S) e ds dk. 33
WD =g L) ks © -

The integral with respect to § may be evaluated in terms of the residues of the integrand at
the zeros of the function w2 (k. 5) in the feft half planc. The equation

mya (A, i) =0 (34)

is the dispersion equation for plane wave propagation in the laminate, corresponding to
waves travelling in the direction of the normal to the line load under traction frec conditions
at the two surfaces of the plate. This equation has an infinite number of pairs of roots,
@, = +w k) (j=1.2....). each pair corresponding to forward and backward travelling
waves associated with one branch of the dispersion curve. In terms of these solutions, eqn
(33) becomes

[ d .2 (A, )
w,(2h x.0) = "r-r,[ dk Y {'”j -5 et ""} . (35
- " j V= s (k)

= L dm,/ds



Stress variation due to an impact line load 577

Both m,~(k, 5) and m..(k, §) are even functions of § and eqn (35) may be written as

u,(2h.x. 1) = ; y J R (k) sin w(k)r e** dk (36)
j=td =%
where
ms(k,5) . (k, $)
oy — e P 7
R}(A) [d”l;ﬁ/d?j}.-#m) (3] [dm;«/df]\u ~ies, (aU (3 )

It may also be shown that R,(k) is an even function of k£ and eqn (36) may be further
simplified to give

b

5
w, (2h.x.0) -; Z R,(k) sin @,(k)t cos kx dk. (38)

The expression (38) consists of a sum of integrals, one along each branch of the dispersion
curve. In general both the integration and summation have to be carried out numerically
and we must therefore limit the range of integration to some finite interval (0, £) and restrict
the summation to a finite number of branches j = 1, ..., P of the dispersion curve. To carry
out the numerical evaluation we choose the values for the material parameters that were
prwiously employed by Green and Baylis (1988) and which relate to a carbon fibre/epoxy
resin composite. For the inextensible model, these are ¢i/ci = 4.297 and ¢i/ci = 2.301. We
have taken as unit of kength the thickness fr of each ply and as unit of time the quantity
hlcy. For a given value of 7, the dispersion equation has been solved for 18 modes (£ = 18)
with values of k2 ranging from zero to 20 (K = 20/k). Full details of the numerical procedures
are to be found in Green and Baylis (1988).

4. RESULTS AND DISCUSSION

The nuture of transient wave propagation in a plate of isotropic clastic material has
heen examined in considerable detail by Jones (1964), Weaver and Pao (1982) and by
Vasudevan and Mal (1985). The paper by Jones deals with linc impact loads which generate
an antisymmetric (lexural) motion of the plate and attention is focussed on the bending
stress at the upper surface of the plate. The solution is derived in terms of the normal modes
of flexural wave propagation, with the stress being expressed as a sum over the modes of a
set of infinite integrals with respect to the wavenumber, in a form which is analogous to
the expression (38). Jones evaluates these integrals using the stationary phase approximation
and gives a comparison between the contributions of each of the first four modes. Weaver
and Pao (1982) also adopt the method of normal modes to obtain expressions for the
displacements due to any time dependent body force. They examine in detail the normal
displacement at the top and bottom surfuce of the plate produced by a vertical point force
imposced on the top surfuce at time ¢ = 0 and held constant for ¢ > 0. These authors also
discuss the solutions in terms of the stationary phase approximations. In addition they
carry out a numerical integration over the first 10 modes, presenting results showing the
individual contributions of cach of the first five modes as well as giving the overall response
duc to all 10. The paper by Vasudevan and Mal (1985} deals with the transient surface
displacement duc to an internal dislocation source and also examines the same surflce point
load problem as that treated by Weaver and Pao. These authors use transform methods and
the propagator matrix technique to obtain the solution. The transform inversion is carried
out in a different order from that adopted here, with inversion with respect to wave number
& being carried oul first to yield the spectral response which is then inverted by Fast Fourier
Transform. The separate contributions from individual modes and the overall response
obtained by summing over modes show excellent agreement with those of Weaver and Pao.

It is well know that the parameter which governs pulse propagation in dispersive media
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is the group velocity ¢, = dw/dk (see e.g. Achenbach. 1973) and the method of stationary
phase brings out the fact that the pulse amplitude decays as £~ ' = at large times. A slower
rate of decay is associated with the wave fronts, which correspond to the stationary values
of the group velocity. These fronts are termed advancing (or mode arrival) when the group
velocity 1s a local maximum and receding (or mode disappearance) when the group velocity
has a local minimum. When the stationary value occurs at a finite wavenumber &, the form
of the disturbance s given by the Airy function and the amplitude decays as 7' ¥ at large
times. When the stationary value for the group velocity is approached asvmptotically as
k - x  the wave front may be associated with a finite or an infinite discontinuity, depending
on the behaviour of the integrand for large values of &,

We shall shortly present our detailed results for the variation of stresses at various
points through the thickness of the laminate. Before doing so. we examine the contributions
of individual dispersion curves to the stress response at the top surface of the plate.
interpreting these in terms of the associated group vefocity. We take as our example the
shear stress component ¢, which jumps discontinuously to a zero across the boundary and
for which the timiting value of the transform T, at the upper surface within the material
is given in eqn (27) as pcisikm,/my .. Here we discard the factor peis and numerically
invert the term ikmy,/my, to obtain the response t{x. 1) in the approximate form

lid X P
) =Y | kR(K)sinwk)sinkxdk = Y t,(xv.0. (39
e A =1

where the residue R, (k) is defined in egn (37). All the other stress transforms at the upper
surface, given by cqn (27), involve the term kg /gaamty; and sinee ¢5.gay is of order
one the expression {39) may be taken as representative of the stress state at the top surface
of the plate.

The results which we shall shortly present relate to two values of y, namely 30 and
60 and in Table 3 we list the quasi-dilatational and quasi-shear wave speeds in both
material 1 and material 2 at these angles, These speeds are those assoctated with the
vanishing of py, p, and ¢,. ¢, and they are given by

1.2 IR AN R4 o fen I ITREE B
g = (('g.\ + 3¢ )‘ s U = (( 38T R j

Oy = (et +0isT) 13, g = (ci i)

Also shown in Table 3 arc the surface wave speed at cach angle in material 2, ¢4y and the
plate wave speed associated with each angle, vy, This latter is the limiting long wavelength
velogity for the fundumental mode of anti-symmetric (flexural) waves in the plate and it is
derived in Baylis and Green (1986b). These speeds are given by the expressions

P = (R 403832, vy = (ci+cis?) Y2

where ¢ is the Rayleigh wave velocity for an isotropic material with dilatational wave
speed ¢, and shear wave speed ¢,. We have scaled each of these speeds in Table 3 by ¢, so
that the distance travelled (in units of #) may be obtained by multiplying directly by the

Table 3
v 30 60
[ 0.807 0940
., 0.678 0.555
ry 0.940 0.807
Ty 0.555 0.678
U 0.535 0.673

- 0.545 0.596
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scaled time (measured in units of &/c,). [t may be seen from Table 3 that the surface wave
speed in the outer material (v.g) is less than the quasi-shear wave speed in the inner material
(r),) for y = 30° but that for y = 60° the speed r,, is the lowest of all the wave speeds
tabulated. We have discussed the consequences of this on the limiting speeds of the dis-
persion curves in the short wave limit (kA — ) in our paper (Green and Baylis, 1988a).
There we show that, for the particular numerical values employed here, the short wave
limiting speed of both the fundamental symmetric and fundamental anti-symmetric modes
is .5, for values of y < 46.3°. For all other modes the short wave limiting speed is the lower
of ¢\, and ., which therefore gives the limit as v, for y <45 and v,, for y > 45°. We
accordingly evaluate the integrals t,(x. ) appearing in eqn (39) for values of 7y = 30" and
+ = 60" which provides an example of each of the two possibilities for the limiting behaviour.

In Figs 2-7 we display plots of the dimensionless group velocity, c,/c, versus the
dimensionless wavenumber k4. for a number of modes at both angles of propagation. Also
shown in the same figures are the plots of the residue factors kR,(k) for these modes. All
the residue factors are negative and with the exception of Fig. 2 are plotted to the same
scale. [n order to retain the same range in each figure the factors plotted in Fig. 2 are a half
of the actual values. Figures 2 and 3 relate to the fundamental mode of anti-symmetric
motion aty = 30" and y = 60" respectively. The two group velocity curves are similar. Each
starts in the long wave limit (k4 = 0) at the appropriate plate speed vg. each rises to a local
maximum, falls to a local minimum and finally rises towards an asymptotic value as kh —
o (short wave limit). [n Fig. 2 this short wave limiting speed is v, whereas in Fig. 3 the
limit is r,,. The residuc factors in the two figures are strikingly different. Both factors have
the same value at k4 = 0 (the values shown in Fig. 2 must be doubled to obtain the residue
factors) but whilst the factor in Fig. 3 drops to zero at the group velocity minimum and
remains zero thercafter, that in Fig. 2 continues to increase and approaches a straight line
as kh increases. The fundamental modes of symmetric motion differ from these only in the
long wavelength limit kA — 0 where, at cach angle, the group velocity drops from a maximum
and reaches a small negative value at ki = 0 and the residue factor at each angle drops to
zero at kh = 0. Figures 4 and S show plots relating to the second anti-symmetric mode at
y = 30" and y = 60" respectively. Here the limiting group velocity as kb — oo in Fig. 4 is
the quasi-shear speed in the outer material, vy, whilst that in Fig. 5 is the quasi-shear speed
vy, in the inner material. Once again there is a striking difference between the residue factors
in the two figures. The curves shown in Figs 6 and 7 are the group velocity and residue

1.0
c,/c

-2.9

-2.5

Fig. 2. Group velocity and residue contribution for fundamental mode of anti-symmetric motion
aty = 30",
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Fig. 3. Group velocity and residue contribution for fundamental mode of anti-symmetric motion
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Fig. 4. Group velocity and residue contribution for second mode of anti-symmetric motion at
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15 100, 12.5 15 0 12,8, 200

Fig. 5. Group velocity and residue contribution for second mode of anti-symmetric motion at

v =607,

-0. %

KR,

Fig. 6. Group velocity and residue contribution for fifth mode of anti-symmetric motion at y = 30 .



Stress variation due to an impact line load 381

-2.0

Fig. 7. Group velocity and residue contribution for fifth mode of anti-symmetric motion at 3 = 60 .

factor curves for the fifth anti-symmetric mode at y = 30" and y = 60", respectively. These
are chosen as being typical of the curves for the higher harmonics and in both figures the
group velocity curves exhibit high and low velocity plateaus on which the speeds are close
to the higher and lower of the two quasi-shear speeds v, and v,,. It may be seen from Fig.
6 that at y = 30" the high speed platcau (which corresponds to the inner quasi-shear speed
v;,) is associated with a small residue factor, whereas the low speed platcau (outer quasi-
shear speed vy,) is accompanied by a relatively large residue factor. Figure 7 shows a large
residue associated with the high speed plateau (which is now the outer quasi-shear speed
vy,) whilst the residue is small or zero at the low speed (vy,).

Figures 8-13 show the individual contributions t,(x, ¢) to the upper surface shear stress
function t(x, ¢) arising from modes 1, 2 and 5 of the anti-symmetric motion at y = 30" and
y = 60". Each of these figures shows the variation of the contribution 7, as a function of

25

20

-10

-15

J
-20

Fig. 8. Stress contribution due to fundamental mode of anti-symmctric motion at y = 30°.
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x/h

5 ) ts w \7/ ) 15 "

Fig. 9. Stress contribution due to fundamental mode of anti-symmetric motion at y = 60 .

-1

x/h at t = 40h/c,. We point out that the plots have differing vertical scales, reflecting the
relative contributions from each mode. Figures 8 and 9 relate to j = | and to the angles
v = 30" and y = 60" respectively. Figure 9 shows a small amplitude isolated disturbance
travelling with the plate speed vy whereas the graph in Fig. 8 is completely dominated by
the large amplitude high frequency contribution which has travelled a distance x ~ 21.54
corresponding to the speed r1 of the Rayleigh surface wave. Extending the integration range
in eqn (39) from £ to oo and assuming the residue factor shown in Fig. 2 to continue along
the linear portion would lead to a singularity in the stress contribution which travels with
the surface wave speed 1, The high frequency oscillation shown in Fig. 8 is a manifestation
of the Gibbs' phenomenon, brought about by abruptly terminating the integration at £
where the residue factor is non-zero. A similar effect is evident to some extent in Figs 10
and 12, which both relate to y = 30 and which correspond toj = 2 and j = §, respectively.
The corresponding residue factors, shown respectively in Figs 4 and 6, are non-zero at the
cut-off limit, £ = 20/h, imposed on the integrals in eqn (39). Figures 9, 11 and 13, which
refer to y = 607 and § = 1, 2 and § respectively, on the other hand, show no truce of this
phenomenon and it may be seen from Figs 3, 5 and 7 that in each of these cases the residuc
factor is zero at k = £. In evaluating the total response summed over all the modes we have
eliminated this high frequency oscillation by use of a windowing function which brings the
residues smoothly to zero at the cut-off £ (see Baylis and Green, 1988 for details).

The stress variation shown in Fig. 11 displays both a forward facing Airy function

-3
Fig. 10. Stress contribution due to second mode of anti-symmetric motion at y = 30",
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Fig. l1. Stress contribution due to second mode of anti-symmetric motion at y = 60 .

oscillation for x > 244 and a backward facing Airy function oscillation for x < 154, which
are associated with the local maximum and local minimum values of the group velocity,
respectively. Figure 10 also shows a backward facing Airy function for x < 18h, associated
with the local minimum of the group velocity at k# = 2.25 but the main feature is again a
large amplitude high frequency contribution in the region 20 < x/h < 22. Of the three
modal contributions shown for y = 60" the highest stress amplitude is to be found in Fig.
13 and is associated with the large residue Factor shown in Fig. 7 for the high speed plateau
region 12.5 < kh < 17.0. A large residue associated with such a plateau region occurs for
values of kit < 20.0 in the harmonics j = 3 toj = 6 and the magnitude of the residue appears
to increasc lincarly with wavenumber. If this behaviour were to persist for £ < & < oo then
the cumulative effect of all the modes, when integrated over all values of &, would give rise
to a singularity in the stress travelling at the speed v,, of the quasi-shear wave in the outer
layer. The main contribution from the harmonic j = § at y = 307, shown in Fig. 12, arises
from the constant residue factor associated with the low speed plateau which extends from
klt = 16 up to the cut-off point. A constant residue term of this kind is associated with the
limiting low velocity plateau of the harmonics j = 3 to j = 6 in the range up to kA = 20.0
and if this persists for £ < k& < oo then the integrated cumulative effect over all the harmonics
would here also give rise to a singular stress travelling with speed v,, of the quasi-shear
wave in the outer material, The detailed individual responses shown here only for the anti-
symmetric modes are to a large extent reproduced in the symmetric modes. In particular
the fundamental symmetric mode has a large surface wave contribution for y = 30” but a
very small stress level at y = 60°. The upper surface response of the plate is obtained by
summing the symmetric and anti-symmetric modes whilst the lower surface response is

x/h

-2

Fig. 12. Stress contribution due to fifth mode of anti-symmetric motion at y = 30°.
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Fig. 13, Stress contribution due to fifth mode of anti-symnetric motion at 7 = 60 .

obtained by subtracting. In consequence the surface wave contributions reinforee cach
other at the upper surface and cancel out at the lower surface.

We turn now to examine the stress variation through the plite using results obtained
by summing over nine anti-symmetric modes and nine symmetric modes. Qur first set of
curves, Figs 14 and 15, shows the variation of the shear stress component ¢, as a function
of distance x/h from the impact line, at a time of ¢ = 404/¢, after impact. Each figure consists
of five curves showing the stress at the upper surfuce, the upper interfice, the mid-surface,
the lower interfuce and the lower surfuce. respectively. The non-zero vatues at the upper
and lower surfaces are the discontinuous values parallel to the fibre direction, They are
caleulated from eqn (27) at the upper surface and its equivalent at the lower surface. The
values at the interfaces refer to the outer material in each case and are caleulated from egn
(29) at the upper interface and its equivalent at the lower. At cach of these interfaces there
exist discontinuities in this stress component and the values in the inner material may be
determined from egns (30) but are not displayed here. Finally the mid-surfuce value is
derived from the first of eqns (32) using the expression (31} for U,(0). Figures 14 and 15
refer to propagation at angles v = 30" and 60, respectively. The second set of curves, Figs
16 and 17, has the same format as the fiest set and again refer 1o the stress component 145,
but now at time 1 = 200i/c, after impact. The most obvious feature of thee two sets of
curves is the large stress amplitude to be seen on the upper surface for propagation at angle
30 (Figs 14 and 16). The distance of this disturbance from the impuct point shows in each
case that itis associated with the Rayleigh surface wave which propagates at this angle but
which does not exist at 3 = 60 (Figs 15 and 17). Another significant feature to be seen in all
the curves is the low level of shear stress at the mid-surface as compared with the level in
the outer material at the interfaces and at the upper and lower surfaces. This high shear
stress toad in the outer layers is consistent with the shearing behaviour of inextensible
materials under bending loads (sce Rogers and Pipkin, 1971) since the shear stress com-
ponent 1, is associated with the inextensibility direction in the outer layers. In all thesc
figures there is some disturbance evident at distances associated with the faster of the two
quasi-shear speeds at each angle. For 3 = 30 this fastest wave speed is that in the inner
material (r,,) and the associated stress fevel is small, with the main pulse travelling at o
speed close to that of the quasi-shear wave in the outer material (r,). Fory = 607 it is the
speed ¢, in the outer material which is the greater and there is in this case a significant
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stress level associated with this speed which gives a pulse extending over a much longer
distance than that for y = 30",

The next two sets of curves (Figs 18 and 19 and Figs 20 and 21) show the variation of
the shear stress component ¢, ; with distance from the impact line at times 1 = 40h/c, (Figs
18 and 19) and ¢ = 200A/c, (Figs 20 and 21). These again relate to angles of propagation
v = 30" (Figs 18 and 20) and y = 60" (Figs 19 and 21). The three curves displayed in each
figure give the stress at the upper interface, at the mid-surface and at the lower interface
respectively. At the upper surface and the lower surface, the shear stress component 1,5 is
zero. In each of these figures, the interface stress is calculated in the outer material (material
2), using the expression in eqns (29) at the upper interface and its equivalent at the lower
interface. There is a discontinuity in this stress component across the upper and lower
interface and the value in the inner material at the upper interface may be determined using
eqns (30). but this is not displayed here. We note, however, from eqns (29) and (30) that

the stress component ¢\ in the inner material [eqns (30)] is obtained from the stress
component ¢\7 at the interface in the outer material [eqns (29)] by multiplying by the factor

cot y so that the qualitative behaviour of the stress #{} may be deduced from Figs 14-17.
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Fig. 18. Stress component ¢,, at time ¢ = 40k/c, for y = 30" at: {a) upper surface, (b) mid-surface,
{c) lower interface.
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Fig. 19. Stress component ¢,y at tune ¢ = 30h/c, for ; = 60 at: (a) upper surface, (b) mid-surface,
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Fig. 20. Stress component ¢, ; at time ¢ = 200A/c, for y = 30" at: (a) upper surface, (b) mid-surface,
(¢} lower interface.
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In discussing the sets of curves displayed in Figs 18-21, we recall that the stress
component ¢,, refers to the shear stress parallel to the fibre direction in the inner material.
Figures 18 and 20 which relate to the angle 30° clearly show that the effect of the Rayleigh
surface wave s transmitted down through the upper layer to the first interface but that this
effect dies out within the inner material and is not apparent at the mid-surface nor at the
lower interface. At angle 60" (Figs 19 and 21). the stress level throughout the inner core
material is low, showing that there is little shearing along the fibre direction.

The sets of curves in Figs 22-25 relate to the in-plane stress component ¢... Again,
Figs 22 and 23 are at time ¢ for which ¢ = 40#4/c, and Figs 24 and 25 correspond to
¢t = 200h/c,. Each figure consists of four curves which give ¢, at the upper surface [eqn
(27)}. at the upper interface in the outer material [eqns (29}]. at the lower interface in the
outer material and at the bottom surface. It may be seen from eqns (27) and (29) that the
stress component 7,4 at the outer surfaces and at the two interfaces in the outer material
are obtained from ¢, on multiplication by a factor. Furthermore, eqns (30) show that in
the inner material at the interfaces the stress component ¢;; is equal to the component ¢,
at the same interface in the outer material. These stress components all refer to the con-
tinuous stress value within the respective materials but there also exist singular stresses
along the fibres at each interface and at the outer surfaces. Thus there are singularities in
% for the outer material at x, = +2h and x, = +/ with singularities in £,7 in the inner
material at x, = +4A.

The curves shown in this set of figures correspond to propagation at angle 307 (Figs
22 and 24), and 60" (Figs 23 and 25). The main feature here also is the stress level associated
with the Rayleigh surface wave at 30 which does not exist at 607, Another significant
feature, evident in all the figures but particularly so in Figs 24 and 25, is the presence of a
slow moving low frequency disturbance at the interface which is not preseat at the outer
surfaces.

Finally, in Figs 26 and 27 we present a comparison between the shear stress levels £,
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Fig. 21. Stress component ¢, at time ¢ = 200h/c, for y = 60" at: (a} upper surface, (b) mid-surfiace,
{c) lower interface.
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Fig. 22. Stress component £y, at time ¢ = 404jc, fory = 30 at: (a) upper surface, (b) upper interface,
(¢) lower interfuce, (d) lower surface.
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Fig. 23, Stress component ¢,y at time ¢ = 404/c, for y = 60" at: (a) upper surfuce, (b) upper interface,
(¢} lower interface, (d) lower surface.

in the inextensible material (Fig. 26) and in the extensible material (Fig. 27). These figures
relate to the fundamental mode of anti-symmetric motion for propagation along the fibre
direction (y = 07). Each figure consists of five curves, associated with five different values
of the wavenumber (k/1), which correspond to wavelengths ranging from approximately
704 to approximately 0.8/ All the curves show the variation of the shear stress component
1,: through one half of the plate as a function of scaled distance x,/4 from the mid-surface.
The numerical values 7,, are, in each case, scaled by the value of the bending stress
component at the same wavelength calculated at the outer surface, %,. With the exception
of curves (a), the corresponding curves in each figure show a remarkable similarity except
for the narrow band in the region of the interface (x,/h = 1.0), where the inextensiblc
material exhibits the discontinuity and the extensible material shows a rapid variation of
shear stress in order to maintain continuity. Curve (a) in Fig. 26 shows a very high level of
shear stress in the core material as compared with that of curve (a) in Fig. 27. This is a
reflection of the fact that, in the long wavelength limit, the inextensible material is incapable
of sustaining the St. Venant bending mode associated with a linear variation of normal
stress ¢y through the thickness but deforms rather through shearing (Rogers and Pipkin,
1971). Further detailed comparisons of stress levels are to be found in Baylis (1986).
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Fig. 24. Stress component £, at time 1= 200/ ¢, for 7 = 30 at: (1) upper surfuce, (b) upper
interface, (¢) lower interface, (d) lower surface.
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Fig. 27. Variation of shear stress 1, through a four-ply plate not subject to the inextensibility
constraint. (@) ki = 0.075, (b) kh = 1.374, (c) kh = 1.729_(d) kh = 3.669, (c) kh = 7.530.
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